

功能描述

KTG2016 是一款高性能、电流模式 PWM 控制器。内置高压功率开关,最大程度上节约了产品的整体成本。在 100V~240V 的宽电网电压范围内可提供高达 18W 的连续输出功率。

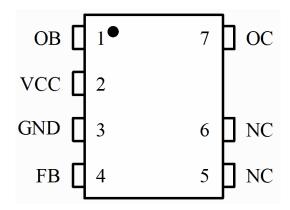
KTG2016 可工作于典型的反激电路拓扑中,构成简洁的 AC/DC 电源转换器。内建自供电电路,省辅助绕组供电,极简的外围器件。

KTG2016 控制输出频率大小,在输出功率较小时自动降低工作频率,从而实现了很低的待机功耗;内置开关管始终工作于临界饱和状态,可提高系统的工作效率,使系统可以轻松满足"能源之星"关于待机功耗和效率的认证要求。

当 KTG2016 的 VCC 达到 6.1V 时内部会启动过压保护,限制输出电压上升可防止光耦或反馈电路损坏引起的输出电压过高。同时, KTG2016 还集成了过载、短路、过流、过温保护等功能,一旦发生保护,KTG2016会降低工作频率或关闭输出,以确保电源系统的安全性。

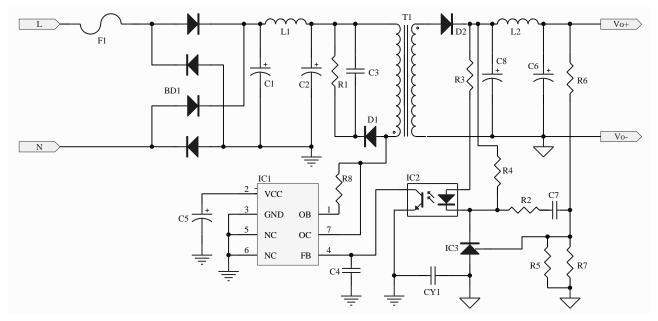
KTG2016采用 DIP-7 封装。

功能特性


- ▶ 在 100V~240V 交流输入范围内,连续输出功率可达 18W
- ▶ 内置 700V 高压开关管
- ▶ 内建自供电电路,无需辅助绕组供电
- ▶ 电流模式 PWM 控制
- ➤ VCC 工作电压范围 4V~6V
- 轻负载时自动进入跳周期模式
- ▶ 过载、短路、过流、过温及光耦失效保护电路
- ▶ 待机功耗小于 0.15W
- ▶ 频率抖动降低 EMI 滤波成本

应用领域

- ➤ AC/DC 电源适配器
- ➤ LED 电源
- ▶ 空调电源
- ➤ DVD/VCD 电源
- ▶ 电磁炉电源
- ▶ 机顶盒电源


引脚图示

引脚定义

引脚号	引脚名	描述
1	ОВ	上电启动引脚,外部连接启动电阻与高压 OC 脚相连
2	VCC	供电引脚,外部连接一个 22uF~100uF 的贮能电容对地
3	GND	接地引脚
4	FB	反馈控制端引脚,接 10nF~100nF 电容对地,光耦对地控制输出
5, 6	NC	空引脚,内部无电气连接
7	OC	输出引脚,连接芯片内高压功率管,外部与开关变压器相连

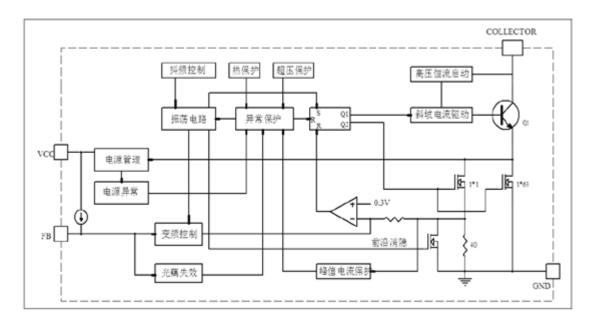
典型应用电路

注: 以上线路及参数仅供参考,实际的应用电路请在充分的实测基础上设定参数。

绝对最大额定值

参数	数值
供电电压 VCC	-0.3 到 8V
供电电流 VCC	100mA
引脚电压	-0.3V 到 VCC+0.3V
功率管耐压	-0.3V 到 700V
功率管电流	1.8A
峰值电流	800mA
总耗散功率	1000mW
工作温度	-20℃到+125℃
存储温度	-55℃到+150℃
焊接温度(焊接,5秒)	+280℃

注意:超过绝对最大额定值,可能对设备造成永久损坏。这些仅是极限参数,器件工作在这些或其它超过 "推荐工作条件"的状态都不是被推荐的。长时间工作在绝对最大额定状态会影响器件可靠性。

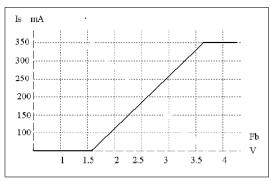

电气特性

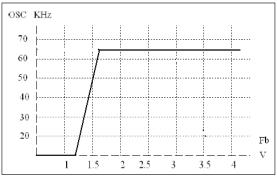
项目	测试条件	最小值	典型值	最大值	单位
电源电压 VCC	AC 输入 85V~265V	4	5	6	V
启动电压 VCC	AC 输入 85V~265V	4.8	5	5.2	V
关闭电压 VCC	AC 输入 85V~265V	3.6	4	4.2	V
电源电流	VCC=5V, FB=2.2V	10	20	30	mA
启动时间	AC 输入 85V			500	mS
OC 保护电压	L=1.2mH	460	480	500	V
功率管耐压	Loc=1mA	600			٧
功率管最大电流	VCC=5V, FB=1.6V∼3.6V	600	660	700	mA
峰值电流保护	VCC=5V, FB=1.6V~3.6V	650	720	800	mA
震荡频率	VCC=5V, FB=1.6V~2.8V	50	65	70	KHz
变频频率	VCC=4.6V, FB=2.8V∼3.6V	0.05		65	KHz
抖频步进频率	VCC=4.6V, FB=1.6V~2.8V	0.8	1	1.2	KHz
温度保护	VCC=4.6V, FB=1.6V∼3.6V	125	130	135	$^{\circ}\mathbb{C}$
PWM 占空比	VCC=4.6V, FB=1.6V∼3.6V	5		50	%
控制电压 FB	AC 输入 85V~265V	1.6		3.6	V

内部电路框图

Wide Input Range Synchronous Buck Controller

工作原理描述

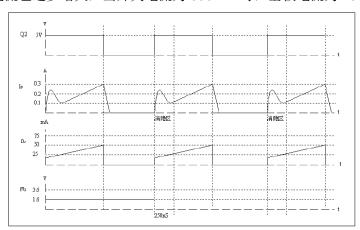

▶ 正常工作状态


电路完成启动后,振荡器开始工作,触发器的 Q1, Q2 输出高电平,高压晶体管与功率 MOS 管同时导通,开关电流经晶体管与功率 MOS 管接到 40Ω 电流取样电阻,并在电阻上产生与电流成正比的电压,(由于开关变压器分布电容的存在,在电路开通的瞬间有一个高的尖峰电流,为了不引起电路的误动作,在电路开通时启动一个前沿消隐电路将尖峰电流去除,消隐时间为 250nS),控制端 FB 电压经斜坡补偿后与取样电阻上的电压相加后与 0.63V 的基准电压相比较,当电压高于基准电压时比较器输出低电平,触发器的 Q1, Q2 输出低电平,高压晶体管与功率 MOS 管同时关断,COLLECTOR 端电压上升,电路进入反激状态,在下一个振荡周期到时,电路将重新导通工作。

➤ FB 控制方式

FB 引脚外部应当连接一只电容,以平滑 FB 电压,外接电容会影响到电路的反馈瞬态特性及电路的稳定性,典型应用可在 10nF~100nF 之间选择; 当 FB 电压高于 1.6V 而小于 3.6V 时,电路将以 65KHz 的频率工作,当 FB 电压高于 1.2V 而小于 1.6V 时,电路将随着 FB 的电压下降而降低频率,当 FB 电压低于 1.2V 时,电路将停止工作,当 FB 电压高于 3.6V 时电路将启动一个 48mS 的延时电路,如在此期间 FB 电压恢复到 3.6V 以下,电路将继续正常工作,否则,KTG2016将进行重新启动,此电路完成对光耦失效的保护。

IS 与 FB 的关系


FOSC 与 FB 的关系

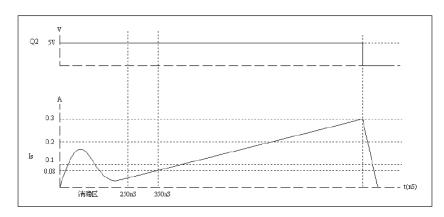
▶ 自供电方式

KTG2016 内建自供电电路,不需要辅助绕组来供电。

▶ 基极斜坡电流驱动方式

为了降低 KTG2016 的耗能及提高电路的效率,内部为高压晶体管的基极提供的电流采用了斜坡电流驱动技术,当开关电流 IS 为 0 时,基极电流约为 40mA,随着开关电流的逐步增大,基极电流也逐步增大,当开关电流为 600mA 时,基极电流为 100mA。

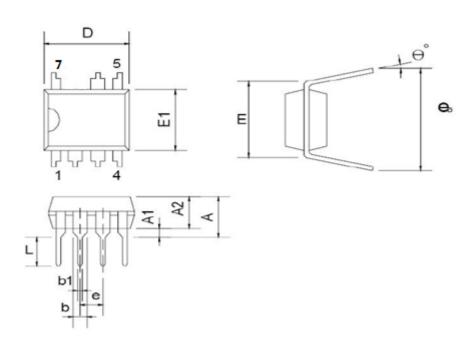
▶ 频率抖动


为了能满足 EMC 的要求, KTG2016内设有一个抖频电路,PWM 的频率将以 65KHz 的频率为中心,以 1KHz 的步进在 8 个频率点上运行,这样有效的降低了 EMC 的设计的复杂度及费用。

▶ 保护方式

KTG2016 的温度达到 130℃时,KTG2016 将进行重新启动,直至 KTG2016的温度降低到 120℃以下,KTG2016 才会重新进入正常工作状态;因外部的某种异常引起的电流过大时,当电流达到 720mA 时,KTG2016 将进行重新启动;因外部的某种异常引起的电源电压高于 6V时,或电源电压低于 4V时,KTG2016 将进行重新启动;在完成启动后,

内部设定了一个电流的上升斜率检测电路,当外部的电压超高或者开关变压器的失效,都会引起电流的斜率变化,保护电路将会对电路进行重新启动,这样保证了高压晶体管的安全,同时对低频的浪涌电压进行了有效的保护。



根据电感电流公式 I = U/L*t 可知,在电感不变时,在一个固定的时间上检测电流可计算出电压,KTG2016 利用该原理在 350nS 时检测 IS 电流,当 IS 电流小于 0.14V 时,电路正常工作,当 IS 电流大于 0.14V 时,KTG2016 进入异常保护;同理,当外部的电感器的电感量变小,也会让 KTG2016 进入异常保护;这样即可以保护母线电压过高引起的开关管的击穿,也可以保护因外部变压器的饱和或者短路引起的电感量下降导致 IS 电流过大,引起 KTG2016 的损坏。

封装信息

DIP-7

符号	毫米			英寸		
	最小值	典型值	最大值	最小值	典型值	最大值
Α	SP 52	- 6	5.334	7	3	0.210
A1	0.381	**		0.015	***	
A2	3.175	3.302	3.429	0.125	0.130	0.135
b	- VI	1.524	j		0.060	
b1	W W	0.457	#VVC> 970-000		0.018	1.1-79-00-00.10
D	9.017	9.271	10.160	0.355	0.365	0.400
E	NA	7.620	37112830-0113		0.300	
E1	6.223	6.350	6.477	0.245	0.250	0.255
E		2.540			0.100	
L	2.921	3.302	3.810	0.115	0.130	0.150
ев	8.509	9.017	9.525	0.335	0.355	0.375
θ°	0°	7°	15°	0°	7°	15°